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Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany

Received: 13 February 2004 / Revised version: 1 March 2004 /
Published online: 8 April 2004 – c© Springer-Verlag / Società Italiana di Fisica 2004

Abstract. Open Wilson lines are known to be the observables of non-commutative gauge theory with
Moyal–Weyl �-product. We generalize these objects to more general �-products. As an application we
derive a formula for the inverse Seiberg–Witten map for �-products with invertible Poisson structures

1 Introduction

Non-commutative gauge theories have been under close
investigation as it was realized that they can be imple-
mented by a certain string theory [8]. In these theories the
non-commutativity is introduced via a �-product on ordi-
nary function spaces. Most research up to now has only
considered the case of the Moyal–Weyl �-product

f � g = lim
x′→x

e
i
2 θij∂i∂

′
j f(x)(x′)

which depends on a constant tensor θij . In the string theory
approach, this tensor is related to a constant B-field on
a brane. On a curved brane this B-field becomes position
dependent [25]. For this it is necessary to look at the case
where the tensor θij is not constant anymore. In this case
�-products can be defined as polydifferential operators:

f � g = fg +
i
2
θij(x)∂if∂jg + higher order terms. (1)

The functions should still form an associative algebra.
Therefore θij has to be a Poisson tensor:

θil∂lθ
jk + cyc. = 0.

On the other hand one can show that every Poisson
tensor gives rise to a �-product that looks like (1) [1] and
that a large class of algebras may be represented in this
way [21]. In these cases the higher order terms all depend
only on θij and its derivatives.

The fundamental objects of non-commutative gauge
theory are covariant coordinates which can also be defined
for the �-products (1). In this paper we will use these
covariant coordinates to generalize the open Wilson lines
introduced in [24, 26, 27]. In [23] they were used to give
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an exact formula for the inverse Seiberg–Witten map. We
will generalize this construction for �-products of type (1)
with invertible Poisson structure θij .

2 Covariant coordinates

In a non-commutative version of a U(1)-gauge theory, a
scalar field should transform like

φ′ = g � φ,

where g is a function that is invertible with respect to the
�-product:

g � g−1 = g−1 � g = 1.

Note that multiplication with a coordinate function is
not covariant anymore:(

xi � φ
)′ �= xi � φ′.

In the classical case the same problem arises with the
partial derivatives. In analogy to this, covariant coordinates

Xi(x) = xi + Ai(x)

can be introduced transforming in the adjoint representa-
tion

Xi′ = g � Xi � g−1.

Now the product of a covariant coordinate with a field
is again a field. An infinitesimal version of this is presented
in [4]. The equivalence of both approaches is investigated
in [2].

In [8] it was shown that commutative and non-commu-
tative gauge theory can be related by the so-called Seiberg–
Witten map. Mapping the classical gauge transformations
and gauge fields to their non-commutative counterparts,
one can show that

Ai = θijaj + O (
θ2) . (2)

This equality also holds in the case of the �-products (1) [12].
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3 Wilson lines

In the case θij = const. the basic observation was that
translations in space are gauge transformations [24]. They
are realized by

Tlx
j = xj + liθ

ij = eilixi

� � f � e−ilixi

� ,

where e� is the �-exponential. Every multiplication in its
Taylor series is replaced by the �-product. Note that in the
constant case exi

� = exi

. Now one can pose the question
what happens if one uses covariant coordinates. In this case
the inner automorphism

f → eiliXi

� � f � e−iliXi

�

should consist of a translation and a gauge transformation
dependent on the translation. If we subtract the transla-
tion again only the gauge transformation remains and the
resulting object

Wl = eiliXi

� � e−ilixi

�

has a very interesting transformation behavior under a
gauge transformation:

W ′
l (x) = g(x) � Wl(x) � g−1 (

x + liθ
ij

)
.

It transforms like a Wilson line starting at x and ending
at x + lθ.

As in the constant case we can start with

Wl = eiliXi

� � e−ilixi

� ,

where � is now an arbitrary �-product (1). The transfor-
mation property of Wl is now

W ′
l (x) = g(x) � Wl(x) � g−1(Tlx),

where

Tlx
j = eilixi

� � xj � e−ilixi

�

is an inner automorphism of the algebra, which can be in-
terpreted as a quantized coordinate transformation. Note
that the eliX

i

� do not close to form a group for θij(x) at least
quadratic in the x’s. Therefore it is not clear how to gener-
alize NC Wilson lines for arbitrary curves as in [24]. If we
replace commutators by Poisson brackets the classical limit
of these coordinate transformations may be calculated:

Tlx
k = e

ili[xi�,·]
� xk ≈ e−li{xi,·}xk = e−liθ

ij∂j xk,

the formula becoming exact for θij constant or linear in x.
We see that the classical coordinate transformation is the
flow induced by the Hamiltonian vector field −liθ

ij∂j . At
the end we may expand Wl in terms of θ and get

Wl = eiliθijaj + O (
θ2) ,

where we have replaced Ai by its Seiberg–Witten expan-
sion. We see that for l small this really is a Wilson line
starting at x and ending at x + lθ. For a given �-product,
the higher order corrections to this expression can in prin-
ciple be calculated. Note that this expression would also
depend on the specific choice of the Seiberg–Witten map
of the covariant coordinates (2).

4 Observables

As space translations are included in the non-commutative
gauge transformations no local observables can be con-
structed. In the case θij = const. one has to integrate over
the whole space

Ul =
∫

d2nx Wl(x) � eilixi

� .

We will assume that θij is invertible and therefore the
dimension of the space has to be even: N = 2n. If one goes
to the Fock space representation of the algebra one sees
that this corresponds to

Ul = tr eiliX̂i

.

In the more general case of non-constant θij we therefore
need a trace for the �-product, i.e. a functional tr with
the property

tr f � g = tr g � f.

Only in this case the trace of a covariant quantity be-
comes invariant. For many �-products we know that the
trace may be written as

tr f =
∫

d2nx Ω(x) f(x) (3)

with a measure function Ω. Due to the cyclicity of the trace
it has to fulfill

∂i

(
Ωθij

)
= 0 (4)

which can easily be calculated with (1). As we take the
Poisson structure θij to be invertible, the inverse of the
Pfaffian

1
Ω

= Pf(θ) =
√

det(θ) =
1

2nn!
εi1i2...i2nθi1i2 . . . θi2n−1i2n

is a solution to this equation. If (3) is fulfilled, cyclicity
is only guaranteed to first order. In principle we have to
calculate higher orders of Ω according to the �-product
chosen. Nevertheless there can always be found a �-product
so that a measure function fulfilling (4) guarantees cyclicity
to all orders [7]. Now we are able to write down a large
class of observables for the above defined non-commutative
gauge theory, namely

Ul =
∫

d2nx Ω(x) Wl(x) � eilixi

� =
∫

d2nx Ω(x) eiliXi(x)
� ,

or more general

fl =
∫

d2nx Ω(x) f(Xi) � eiliXi(x)
� ,

with f an arbitrary function of the covariant coordinates.
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5 Inverse Seiberg–Witten map

As an application of the above constructed observables
we generalize [23] to arbitrary �-products, i.e. we give a
formula for the inverse Seiberg–Witten map for �-products
with invertible Poisson structure. In order to map non-
commutative gauge theory to its commutative counterpart
we need a functional fij [X] fulfilling

fij

[
g � X � g−1] = fij [X],

df = 0

and

fij = ∂iaj − ∂jai + O (θ) .

f is a classical field strength and reduces in the limit
θ → 0 to the correct expression.

To prove the first and the second property we will only
use the algebra properties of the �-product and the cyclic-
ity of the trace. All quantities with a hat will be elements
of an algebra. With this convention let X̂i be covariant
coordinates in an algebra, transforming under gauge trans-
formations like

X̂i′ = ĝX̂iĝ−1,

with ĝ an invertible element of the algebra. Now define

F̂ ij = −i
[
X̂i, X̂j

]

and
(
F̂n−1

)
ij

=
1

2n−1(n − 1)!
εiji1i2...i2n−2 F̂

i1i2 . . . F̂ i2n−3i2n−2 .

Note that the space is 2n dimensional. The expression

Fij(k) = strF̂ ,X̂

((
F̂n−1

)
ij

eikjX̂j

)
(5)

clearly fulfills the first property due to the properties of
the trace. str is the symmetrized trace, i.e.

strF̂ ,X̂

(
F̂ qX̂r

)
=

q!r!
(q + r)!

tr
(
F̂ qX̂r

+ all other possible permutations of q F̂ ′s and r X̂ ′s
)
;

see also [23]. Note that symmetrization is only necessary
for space dimension bigger than 4 due to the cyclicity of
the trace. In dimensions 2 and 4 we may replace str by
the ordinary trace tr. Fij(k) is the Fourier transform of a
closed form if

k[iFjk] = 0,

or if the current

J i1...i2n−2 = strF̂ ,X

(
F̂ [i1i2 . . . F̂ i2n−3i2n−2]eikj F̂ j

)

is conserved, respectively:

kiJ
i... = 0.

This is easy to show, if one uses

strF̂ ,X̂

([
kiX̂

i, X̂ l
]
eikjX̂j

. . .
)

= strF̂ ,X̂

([
X̂ l, eikjX̂j

]
. . .

)
= strF̂ ,X̂

(
eikjX̂j

[
X̂ l, . . .

])
,

which can be calculated by simple algebra.
To prove the last property we have to switch to the

�-product formalism and expand the formula in θij . The
expression (5) now becomes

F [X]ij(k) =
∫

d2nx

Pf(θ)

(
(Fn−1

� )ij � eikjXj

�

)
sym F,X

.

The expression in brackets has to be symmetrized in F ij

and Xi for n > 2. Up to third order in θij , the commutator
F ij of two covariant coordinates is

F ij = −i
[
Xi �, Xj

]
= θij − θikfklθ

lj − θkl∂lθ
ijak + O(3),

with fij = ∂iaj −∂jai the ordinary field strength. Further-
more we have

eikiX
i

� = eikix
i (

1 + ikiθ
ijaj

)
+ O(2).

If we choose the antisymmetric �-product (1), the sym-
metrization will annihilate all the first order terms of the
�-products between the F ij and Xi, and therefore we get

−F [X]ij(k)

= −2n

∫
d2nx

εθn

(
εijθ

n−1 − (n − 1)εijθ
n−2θfθ

−θkl∂l(εijθ
n−1)ak

)
eikix

i

+ O(1)

= −2n

∫
d2nx

εθn

(
εijθ

n−1 − (n − 1)εijθ
n−2θfθ

−1
2
εijθ

n−1fklθ
kl

)
eikix

i

+ O(1)

=
∫

d2nx

(
θ−1

ij + 2n(n − 1)
εijθ

n−2θfθ

εθn

−1
2
θ−1

ij fklθ
kl

)
eikix

i

+ O(1),

using partial integration and ∂i

(
εθnθij

)
= 0. To simplify

the notation we introduced

εijθ
n−1 = εiji1j1...in−1jn−1θ

i1j1 . . . θin−1jn−1 etc.

In the last line we have used

θ−1
ij = −

(
θn−1

)
ij

Pf(θ)
= −2n

εijθ
n−1

εθn
.
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We will now have a closer look at the second term,
noting that

θij εijθ
n−2θfθ

εθn
= − 1

2n
θ−1

kl θkrfrsθ
sl = − 1

2n
frsθ

rs,

and therefore

εijθ
n−2θfθ

εθn
= a

εijθ
n−1

εθn
frsθ

rs + bfij , (6)

with a + b = − 1
2n . Taking e.g. i = 1, j = 2 we see that

ε12...klθ
n−2θkrfrsθ

sl = ε12...klθ
n−2 (

θk1θ2l − θk2θ1l
)
f12

+ terms without f12.

Especially there are no terms involving f12θ
12 and we get

for the two terms on the right hand side of (6)

2aε12θ
n−1f12θ

12 = −2nbε12θ
12θn−1f12,

and therefore b = − a
n . This has the solution

a = − 1
2(n − 1)

and b =
1

2n(n − 1)
.

With the resulting

2n(n − 1)
εijθ

n−2θfθ

εθn
=

1
2
θ−1

ij fklθ
kl + fij

we finally get

−F [X]ij(k) =
∫

d2nx
(
θ−1

ij + fij

)
eikix

i

+ O(1).

Therefore

f [X]ij = F [X]ij(k) − F [x]ij(k)

is a closed form that reduces in the classical limit to the clas-
sical Abelian field strength. We have found an expression
for the inverse Seiberg–Witten map.

6 Outlook

It would be interesting to find an expression similar to (5)
for other non-commutative (compact) spaces like the fuzzy
torus and the fuzzy sphere. In the second case we would
be able to map a commutative su(2)-gauge theory to an
commutative Abelian gauge theory in higher dimensions.
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